July 9, 2015

Mr. Zaw Thein
Assistant Engineer
Bureau of Environmental Quality
Westchester County Department of Health
25 Moore Ave, 1st Floor
Mt. Kisco, NY 10549

RE: Lead & Copper Rule Compliance Report – 2015 (Jan - Jun) Village of Tarrytown, NY

Dear Mr. Thein:

Attached please find following documents for the six monthly lead and copper sampling monitoring from January 2015 to June 2015 by the Village of Tarrytown in accordance with the New York State sanitary code subpart 5-1:

1. Lead and Copper Rule Monitoring Report

2. 90th Percentile Tables for Lead and Copper

3. Lead and Copper Laboratory Test Results for the site locations

4. Water Quality Parameters (WQP) lab results

Please be advised that the Village have made efforts to obtain the required sixty (60) sample bottles. Based on the results received, the Village meets the 90^{th} percentile compliance action limits of 15 µg/L for Lead and 1,300 µg/L for Copper (90^{th} percentile results for lead ($6.34\mu g/L$) and copper ($147\mu g/L$).

Should you have any questions, or require additional information, please do not hesitate to contact us.

Very truly yours,

Village of Tarrytown

Steve Cowles Chief Operator

Enclosure

cc: Michael J. McGarvey, P.E. (w/ attachments)
Howard Wessells, Superintendent, DPW
Arshad Jalil, P.E., BCEE, Principal, Professional Consulting, LLC. (w/

attachments)

2014 LEAD AND COPPER RULE MONITORING REPORT Monitoring Period (Jan, 2015 to June, 2015)

System's Name:	Village of Tarrytown Shaft #10 P.S. Dept. of Public Works	Type: <u>x</u> CWS	NTNCWS
Address:		X	>100,000 50,001 to 100,000 10,001 to 50,000 3,301 to 10,000 501 to 3,300 101 to 500 <100
Telephone #: Fax #	914-631-0456 914-631-2258		y *
Federal ID#:	00003461		
Contact Person:	Steve Cowles, Chief Ope	rator, Type IB	
THE RESULTS OF ATTACHED TO TI	LEAD AND COPPER TAPHIS DOCUMENT	WATER SAMPI	LES MUST BE
# of Samples require	ed: <u>60</u> # or	f Samples submitte	ed: <u>61</u>
90 th Percentile Leve	l: Lead <u>6.34</u> μg/l	Copper 147	μg/l
TARGETING CRIT	TERIA		
and lead sole	cructures with copper pipes der installed after 1982 or lea service lines (Tier 1)	ad pipes	48
with lead so and/or lead s (Only applic	ructures with copper pipes lder installed after 1982 or leservice lines (Tier 1) cable if multi-family structure the structures served by the	es comprise more	N/A
	uining copper pipes lder installed after 1982 or le service lines (Tier 2)	ead pipes	_X_
	in copper pipes and lead solo fore 1983 (Tier 3)	der	12

- anniether und	Total:	60
Explanation of Tier 2 and/or Tier 3 s (attach additional pages if ne	cessary)	into di ines i
Tier #2 and Tier #3 sites were use	d in order to maintain testing 60 s	ample sites_
LEAD SERVICES LINE SITES		
# of samples required to be drawn from	om lead service line sites	_N/A_
# of samples actually drawn from lea	ad service line sites	N/A
Difference (explain differences other		
Method used to identify lead service	line sites	
(attach additional pages if ne	cessary)	
THE RESULTS OF WATER QUA	LITY PARAMETER (WQP) SAI ED TO THIS DOCUMENT	MPLES MUST BE
# of samples required to be collected	di gentilitgici ilrossen er belister et honnolosij hav gentgings, istic	N/A
# of WQP entry point samples requir	ed to be collected	10
# of WQP tap samples actually collection	cted and submitted	<u>N/A</u>
# of WQP entry point samples actual	ly collected and submitted	10_
Steplen of Cowle	Chief Operator Type 1B	7-9-15
Signature	Title	Date

CERTIFICATION OF COLLECTION METHODS

I certify that:

- Each first draw tap sample for lead and copper is one liter in volume and has stood motionless in the plumbing system of each sampling site for at least six hours.
- Each first draw sample collected from a single-family residence has been collected from the cold water kitchen tap or bathroom sink tap.
- Each first draw sample collected from a non-residential building has been collected at an interior tap from which water is typically drawn for consumption.
- Each first draw sample collected during an annual or tri-annual monitoring period has been collected in the months of June, July, August or September.
- Each resident who volunteered to collect tap water samples from his/her home has been properly instructed by (insert water system's name) <u>Tarrytown Water</u>
 <u>Department</u> in the proper methods for collecting lead and copper samples. I do not challenge the accuracy of these sampling results. Enclosed is a copy of the material distributed to residents explaining the proper collection methods, and a list of the results. Sampling was performed by the owners of house/buildings used in the reports.

Signature

Stephen G. Cowles

Name

WTP Chief Operator 1B

Title

Date

CHANGE OF SAMPLING SITES From Jan-2015 to Jun-2015 Monitoring Period

Distance between sites (approxi	imately):	_1 Mile	
Targeting Criteria: New:		Old:X	
Reason for change (attach addit	ional pages if nece	essary):	
Signature Steple	2. Combi		
Stephen G. Cowles Name	WTP Chie	of Operator 1B Title	7-9-15 Date
			LE STATE OF THE ST

_	First Draw Sample Percentile Results 2		
ample #	Lead Location	Sample Date	Lead (µg/L)
ampre a	Location	_	assa (Jugi a)
1		6/26/2015	<1.00
2 .		6/16/2015	<1.00
3		5/27/2015	<1,00
4		5/28/2015	<1.00
5		5/13/2015	<1.00 <1.00
6		5/13/2015	<1.00
7		5/12/2015 5/12/2015	<1.00
8		5/12/2015	<1.00
10		5/13/2015	<1.00
11		5/13/2015	<1.00
12		5/12/2015	<1.00
13		5/13/2015	<1.00
14		5/13/2015	<1.00
15		5/13/2015	<1.00
16		5/27/2015	<1.00
17		5/27/2015	<1.00
18		5/11/2015	<1.00
19		5/27/2015	<1.00
20		5/12/2015	<1.00
21		5/19/2015	<1.00
22		5/11/2015	<1.00
23		5/27/2015	<1 00
24		5/28/2015	<1.00
25		5/12/2015	<1.00
26.		5/12/2015	<1.00
27		5/13/2015	<1.00
28		5/12/2015	<1.00
29		5/13/2015 5/12/2015	<1.00
30		5/27/2015	<1.00
31		5/28/2015	<1.00
33		5/12/2015	<1.00
34		5/27/2015	<1.00
35		6/8/2015	<1.00
36		5/28/2015	<1.00
37		5/13/2015	1.01
36		5/12/2015	1.02
39		5/12/2015	1,04
40		5/13/2015	1.09
41		5/13/2015	1.14
42		5/27/2015	1.17
43		5/12/2015	1.25
44		5/12/2015	1.55
45		5/20/2015	1.67
46		5/13/2015	1.7
47		5/13/2015	1.82
48		5/13/2015	1.96 2.74
49		5/13/2015	
50		5/15/2015	3.01
51		5/13/2015	3.09
52		5/11/2015 5/11/2015	3.34
53		5/11/2015	4.7
54		5/13/2015	6.34
55		5/12/2015	6.74
56 57		5/12/2015	18.2
58		5/14/2015	22.1
59		5/12/2015	41
60		5/10/2015	47
61		5/12/2015	54.6

	-Tarrytown- NY Copper		
Sample #	Location	Sample Date	Copper (µg/L)
1		5/27/2015	<10.0
2		6/26/2015	<10.0
3		6/16/2015	<10.0
4		5/28/2015	<10.0
5 6		5/13/2015 5/13/2015	<10.0
		5/12/2015	10.8
7 8		5/13/2015	12.6
9		5/12/2015	16.3
10		5/12/2015	18.2
11		5/13/2015	19.9
12		5/13/2015	22.7
13		5/13/2015	23.1
14		5/12/2015	25.8
15		5/13/2015	33.9
16		5/13/2015	36.5
17		5/13/2015	37.3
18		5/12/2015	37.4
19		5/27/2015	41.3
20		5/27/2015	44.8
21		5/12/2015	45
22		5/11/2015	46.4
23		5/12/2015	53.6
24		5/13/2015	54
25		5/27/2015	64.5
26		5/12/2015	65.4
27		6/8/2015	66.7 70.7
28		5/19/2015	75
29 30		5/10/2015	78.2
31		5/12/2015	79.3
32		5/11/2015	83.9
33		5/11/2015	85.2
34		5/13/2015	86
35		5/28/2015	89.3
36		5/27/2015	90.2
37		5/12/2015	90.9
38		5/13/2015	93
39		5/28/2015	95.1
40		5/12/2015	96.4
41		5/12/2015	97.1
42		5/13/2015	101
43		5/12/2015	105
44		5/13/2015	109
45		5/13/2015	115
46		5/12/2015	118
47		5/12/2015	118
48 49		5/12/2015 5/27/2015	124
		5/28/2015	132
50 51	14 -	5/13/2015	134
52		5/27/2015	135
53		5/12/2015	146
54		5/12/2015	146
55		5/13/2015	147
56		5/20/2015	155
57		5/15/2015	156
58		5/27/2015	160
59		5/12/2015	172
60		5/13/2015	
61		5/11/2015	314

90th Percentile

Regulatory Action Limit - Lead 90th Percentile 15 μg/L 6.34 μg/L

Regulatory Action Limits - Copper 90th Percentile

1,300 μg/L 147μg/L